If it's not what You are looking for type in the equation solver your own equation and let us solve it.
66x^2+4x-3=0
a = 66; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·66·(-3)
Δ = 808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{808}=\sqrt{4*202}=\sqrt{4}*\sqrt{202}=2\sqrt{202}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{202}}{2*66}=\frac{-4-2\sqrt{202}}{132} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{202}}{2*66}=\frac{-4+2\sqrt{202}}{132} $
| 50-x+9x-40+90=180 | | 15x+(-5)=-1 | | 0=16t(7-t | | 2x-10+3x-65=180 | | 3p^2-3p-12=0 | | 2x+11=-8 | | A(r)=3.14r^ | | 6m=3m+21 | | -0.6x+1.57=-0.8+5.77 | | 287=136-y | | 14x-8=6x-32 | | 5+3x+7=5x-2 | | F(t)=3-^4+2 | | 32=5v+5/4+5v-6/2 | | x²-9x+3=0 | | 3x+13=75 | | x²–9x+3=0 | | F(x)=4^3 | | 3x/8=x+7/12 | | 5x^2-18x=-4x^2-7x-2 | | 5x^2-18=-4x^2-7x-2 | | 3/4-z/5=7/20 | | 2t^2-18t+20=0 | | 14x/24-2x=0 | | 171000=25x+240000-40x | | 4/5x+8=-1/5x-3 | | F(x)=-8x-8 | | X/2+9=x+7 | | (x^2+2x-6)^3=0 | | -21=3p | | H=-16t+20 | | 2=t-5/3 |